
KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 18, NO. 7, Jul. 2024 1817
Copyright ⓒ 2024 KSII

http://doi.org/10.3837/tiis.2024.07.006 ISSN : 1976-7277

Software Key Node Recognition Algorithm

for Defect Detection based on Node
Expansion Degree and Improved K-shell

Position

Wanchang Jiang1, and Zhipeng Liu1*
1 School of Computer Science, Northeast Electric Power University

Jilin 132012, China
[e-mail: jwchang84@163.com, liuzp0526@163.com]

*Corresponding author: Zhipeng Liu

Received January 3, 2024; revised May 14, 2024; accepted June 18, 2024;
published July 31, 2024

Abstract

To solve the problem of insufficient recognition of key nodes in the existing software defect
detection process, this paper proposes a key node recognition algorithm based on node
expansion degree and improved K-shell position, shortened as SDD_KNR. Firstly, the
calculation formula of node expansion degree is designed to improve the degree that can
measure the local defect propagation capability of nodes in the software network. Secondly,
the concept of improved K-shell position of node is proposed to obtain the improved K-shell
position of each node. Finally, the measurement of node defect propagation capability is
defined, and the key node recognition algorithm is designed to identify the key function nodes
with large defect impact range in the process of software defect detection. Using real software
systems such as Nano, Cflow and Tar to design three sets of experiments. The corresponding
directed weighted software function invoke networks are built to simulate intentional attack
and defect source infection. The proposed SDD_KNR algorithm is compared with the BC
algorithm, K-shell algorithm, KNMWSG algorithm and NMNC algorithm. The changing
trend of network efficiency and the strength of node propagation force are analyzed to verify
the effectiveness of the proposed SDD_KNR algorithm.

Keywords: Software Defect Detection, Node Expansion Degree, K-shell Position, Key
Node Recognition

1818 Wanchang Jiang and Zhipeng Liu: Software Key Node Recognition Algorithm for Defect Detection based on
Node Expansion Degree and Improved K-shell Position

 1. Introduction

With the advancement of digital intelligence, software systems are becoming increasingly
intricate, leading to a higher likelihood of software failure [1]. In the process of software
development, it is inevitable that modules have defects [2]. Once these defects are exposed
during the formal use of the software, they will affect the operation of the software and even
cause the cascade collapse of the entire system [3]. Similar to the spread of infectious diseases
in the population, the defects in the software system will spread to other modules without
defects with the dependencies between software system modules, such as method calls and
parameter passing, resulting in other modules cascading failures [4]. In the dynamic execution
state of software, the destruction of a small number of key modules with defects in the software
system will have a greater impact on the software system, and most other software defects
only have a limited impact on the software system [5]. Therefore, if we can accurately detect
the modules that have a greater impact on defects, and pay attention to these key modules, it
will have important reference value for increasing the stability and reliability of software
systems.

Complex network analysis provides a new perspective for analyzing software systems
[6,7]. When the software system structure is represented as a network, entities can be extracted
from different granularities such as packages, classes, methods, and attributes as nodes, and
the dependencies between them can be regarded as edges. Through the combination of these
nodes and edges, a software network is constructed [8]. From a network perspective, the
identification of critical nodes in software system defect detection begins at the class
granularity level. With the deepening of research, scholars have observed that by considering
the function in the software system as the fundamental unit of analysis for identifying critical
nodes in software defect detection, it is possible to pinpoint the causes of software defects at
a more precise level. From the perspective of local node measurement, Dong Jun et al. [9]
utilized the typical degree centrality algorithm in complex networks to pinpoint pivotal nodes
within the network. Wu Hongfei et al. [10] established a directed weighted software network
model and proposed a key node identification algorithm. By considering the influence of
neighbor nodes and secondary neighbor nodes on the node, the algorithm makes the node have
a better distinction in the local scope of the software network. However, these algorithms
ignore the influence of the global information of the software network on the importance of
nodes. Wang Qian et al. [11] proposed the concept of structural entropy and utilized node
structural entropy to assess the significance of nodes. Employing a global measurement
approach, the algorithm discerns function nodes with diminished local significance yet
substantial global impact within the network. Xu et al. [12] used the K-shell position of the
node to calculate the influence value of the node in the global range of the network, and used
the influence value of the node neighbor and the secondary neighbor node to calculate the
comprehensive influence value of the node in the local range of the network to obtain the key
nodes in the network. The algorithm enhances the precision with which key nodes are
identified. Existing algorithms measure the importance of nodes from the perspective of local
and global measurement of nodes in the network, but there are still some shortcomings: 1) The
algorithm regards the influence of neighbor nodes and secondary neighbor nodes of nodes in
the network as the same position; 2) The recognition of key nodes in the network is not
enough.

To solve the above problems, this paper proposed a key node recognition algorithm for
software defect detection based on node expansion degree and improved K-shell position. The
node defect propagation capability measure is defined from the perspective of node defect

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 18, NO. 7, July 2024 1819

propagation, and the key nodes in the software defect detection process are identified
according to the measured value. Firstly, the concept of expansion degree is proposed, and the
influence coefficient that can be dynamically adjusted is set to balance the different influence
degrees of the out-edge neighbors and the out-edge secondary neighbors of the nodes.
According to the influence coefficient, the expansion degree of each node is obtained, and the
influence of the node on the local structure of the network is measured by the node expansion
degree. Secondly, the K-shell algorithm is used to stratify the network, and the improved K-
shell position of each node is obtained. The influence of the global structure of the network is
measured by the improved K-shell position of the node. Finally, the measurement of node
defect propagation capability is defined, and the measurement value of node defect
propagation capability is obtained by combining the node expansion degree with the node
improved K-shell position. The experimental results show that in the process of simulating
software defect detection, the proposed algorithm can better identify the key function nodes in
the software network.

2. Directed Weighted Software Function Invoke Network
In this section, the dependencies among function granularity units in a software system are
extracted dynamically. The function entity is regarded as a node in the network, and the invoke
relationship between functions is regarded as a directed edge in the network, and the direction
of the directed edge is consistent with the invoke relationship between the corresponding nodes.
In addition, the degree of defect propagation between functions is regarded as the edge weight
coefficient for the directed edge [10]. As a result, the directed weighted software function
invoke network is built.

Definition 2.1. Directed software function invoke network (DFIN). It is denoted by a two-
tuples (,)DFIN V E= . { | 1, 2,..., }iV v i N= = is the set of N nodes, where node iv
represents the function entity numbered i in the network, and N is the number of nodes in the

network. (){ } , , , kj kj k j k jE e e v v v V v V= = ∈ ∈ is the set of directed edge, where kje is a

directed edge formed by a pair of ordered function nodes (),k jv v in the dynamic execution of

software, kj jke e≠ .
And the function entity numbered k calls the function entity numbered j , node kv is the

calling function node of kje , node jv is the modulated function node of kje . In particular, if
the directed edge set E does not have any edge with function entity i as the calling function

node, then the node iv is called a leaf function node. And the node set of all leaf function

nodes in V that satisfy this condition is represented as nV .
Definition 2.2. Function call chain (FCC). In every software system, a solitary entry

function initiates execution, sequentially invoking multiple subordinate functions until
culminating in a leaf function that marks the sequence's termination. This ordered series of
function invocations, encompassing both the initiating entry and the concluding leaf function,
is collectively termed a "function call chain". Suppose the entry function node is ()a av v V∈ ,
then a function call chain from node av to node z()z nv v V∈ is represented as

1820 Wanchang Jiang and Zhipeng Liu: Software Key Node Recognition Algorithm for Defect Detection based on
Node Expansion Degree and Improved K-shell Position

(,..., , ,...,)az a k j zf v v v v= , for any two adjacent nodes kv and jv in the above function call

chain, there is kje E∈ , and this function call chain azf contains kje . The chain set of all
function call chains from the entry function node and terminating at each leaf function node is
represented as { | (,..., , ,...,), , , , }az az a k j z a K j z nC f f v v v v v V v V v V v V= = ∈ ∈ ∈ ∈ .

In the directed software function invoke network, some directed edges are used by more
function call chains, and some directed edges are used by less function call chains. This
indicates that during the execution of software functions, the directed edge kje can make
different contributions. By calculating the number of function call chains containing the
directed edge kje in C , different weights are given to the directed edge kje . The directed edge
with higher weight indicates that it makes more contribution in the process of software
executing functions. The set of chains consisting of chains of function calls in C containing

kje is denoted as kjC , use the number of elements in kjC chain set | |kjC to calculate the

weight kjw of kje , as shown in equation (1).

kj kjw =| C | (1)
Definition 2.3. Directed weighted software function invoke network (DWFIN). Each directed
edge in DFIN is weighted, and a triple (, ,)DWFIN V E W= is used to represent the
directed weighted software function invoke network. Edge weight coefficient sets

{ | | |, }kj kj kj kjW w w C e E= = ∈ .

The edge weights establish a one-to-one correspondence between the elements of set kjw

and set kje , ensuring that both sets contain an identical number of elements.

3. Software Key Node Recognition Algorithm for Defect Detection

3.1 Node Expansion Degree
In software networks, node degree is a property that can measure the ability of nodes to
propagate defects locally in the network. It has been widely used in various key node
identification algorithms in software defect detection [10]. However, the ability of nodes to
propagate defects is not only related to themselves, but also related to the ability of neighbor
nodes to propagate defects. If a node itself has a weak ability to spread defects, but its neighbor
nodes have a strong ability to spread defects, then according to the neighborhood principle, it
is considered that the node has a strong ability to spread defects [12]. The degree of neighbor
nodes in the network topology essentially characterizes the ability of the secondary neighbor
nodes to propagate defects. Therefore, this subsection sets a dynamically adjustable influence
coefficient

ivµ to balance the influence degree of outgoing edge neighbor nodes and outgoing
edge secondary neighbor nodes on the defect propagation ability of the specified node in the
local scope. The node expansion degree is designed according to the influence coefficient

ivµ
to measure the ability of a node in the directed weighted function call network to locally
propagate defects in the network.

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 18, NO. 7, July 2024 1821

Definition 3.1. Node nearest neighbors set on out-direction (NNOD). In DWFIN, there is
edge kje , and the modulated function node jv is the outgoing neighbor of the calling function

node kv . Meet with the calling function of node kv all the callback function of node jv node

set { }jv for the node kv nearest neighbors set on out-direction, counted as k
oV ,

()| |k
o kV K v= for the node number kv nearest neighbors set on out-direction. If there is no

edge in the edge set E that takes node kv as the calling function, then nearest neighbors set on

out-direction of node kv is an empty set, and {}k
oV = . The weight of the nearest neighbors

set on out-direction of node kv is equal to the sum of the weights of all edges with node kv as
the calling function, that is,

k
j o

k
o kj

v V

w w
∈

= ∑ .

Definition 3.2. Node next nearest neighbors set on out-direction (NNNOD). In DWFIN,
for k

m ov V∀ ∈ , the nearest neighbors set on out-direction of node mv is denoted as m
oV . Define

node kv next nearest neighbors set on out-direction { | and k k k k
oo m m o mV v v V v= ∈ }m

oV∈ ,

()| |k
oo kV D v= for the node number kv next nearest neighbors set on out-direction. If there is

no edge in the edge set E with node mv as the calling function or the nearest neighbors set on
out-direction of node kv is an empty set, then next nearest neighbors set on out-direction of

node kv is an empty set, and {}k
ooV = . The weight of the next nearest neighbors set on out-

direction of node kv is equal to the sum of the weights of all edges with node ()k
m m ov v V∈ as

the calling function, that is,
k

j oo

k
oo mj

v V

w w
∈

= ∑ .

During the execution of a function within software, the set of direct neighbors (i.e., nodes
that are immediately invoked as function nodes) exerts a more significant influence on the
proper functioning of the software than the set of indirect neighbors (i.e., nodes that are
invoked through secondary connections). To address this disparity, we have devised a dynamic
adjustment mechanism for the impact factors, which allows for the balanced assessment of the
influence exerted by both directly and indirectly invoked function nodes on the node in
question. The node expansion degree is defined accordingly.

Definition 3.3. Node expansion degree (NED). The node expansion degree ()iNED v of
the node iv in the directed weighted software function invoke network is defined to measure
the ability of the node iv to propagate defects locally in the network. The calculation is shown
in equation (2).

 () () ()
ii i v iNED v K v u D v= + (2)

Among them, ()iK v is the number of nearest neighbors set on out-direction of node iv ,

()iD v is the number of next nearest neighbors set on out-direction of node iv , and
ivu is the

influence coefficient of ()iD v . Through the influence coefficient, the influence degree of the

1822 Wanchang Jiang and Zhipeng Liu: Software Key Node Recognition Algorithm for Defect Detection based on
Node Expansion Degree and Improved K-shell Position

function node directly called by the node iv and the function node indirectly called on the

node is adjusted. The calculation process of
ivµ is shown in equation (3).

i

i
o

v i i
o oo

w
w w

µ =
+

 (3)

Among them, i
ow represents the sum of the weight of the node iv ’s nearest neighbors set

on out-direction, as derived from Definition 3.1. And i
oow represents the sum of the weight of

the node iv ’s next nearest neighbors set on out-direction, obtained through Definition 3.2.
The directed edge weight of nodes in the network represents the degree of defect

propagation between nodes. In the local scope, the neighbor node is closer to the specified
node and has greater influence on it, while the sub-neighbor node is farther away from the
specified node and has less influence on it. Therefore, the influence coefficient

ivu , which can
be dynamically adjusted, is calculated to balance the influence of the nearest neighbors on out-
direction of node iv and the next nearest neighbors on out-direction of node iv on the defect
propagation of node iv .

3.2 Improved K-shell Position of Node
In the network, the node expansion degree measures the ability of node defect propagation to
a certain extent, but it is still an attribute characteristic of the node itself. It reflects the local
defect propagation ability of nodes in the network, and ignores the global defect propagation
ability of nodes. The K-shell decomposition algorithm quickly divides the network from the
outside to the inside according to the node location information, and the k-shell position of the
node after partition represents the relative position of the node in the network. The more the
K-shell position of the node is in the core, the greater the influence of the node on the network
[13]. Xu et al. [12] have demonstrated that the K-shell decomposition algorithm effectively
quantifies a node's global defect propagation capacity within the network. However, this
algorithm operates on a coarse-grained level, often assigning identical K-shell positions to a
multitude of nodes. This approach implies a uniform importance among these nodes, which
contradicts the inherent variability in the significance of functional entities within software
systems. To more precisely distinguish the importance of functional entities, this manuscript
employs an improved K-shell position metric to assess a node's global defect propagation
capacity within the network. The program instance written in C language is abstracted as a
directed weighted software function invoke network. The network constructed by the program
instance is shown in Fig. 1. It consists of 12 nodes and 14 edges. The K-shell decomposition
of the constructed network is performed to calculate the improved K-shell position of the node.
The specific process is as follows:

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 18, NO. 7, July 2024 1823

 Fig. 1. Directed weighted software function invoke network

(a) The directed weighted software function invoke network in Fig. 1 is regarded as the

corresponding undirected weighted software function invoke network, and the nodes with
degree 1 in the corresponding undirected weighted software function call network are deleted.
The first deleted nodes are gv ， jv ， lv . Then, the deletion operation is repeated for the nodes
with degree of 1 in the remaining network after removing the nodes, and the second deleted
node is fv . At this time, the degree of nodes in the remaining network is at least 2, so the K-
shell position of all nodes deleted above is 1.

(b) Repeat the process in (a), find the nodes with degree of 2 in the remaining network for
deletion, and the nodes deleted for the third time are bv ， dv ， ev ， hv ， kv . Then, the nodes
with a degree of 2 in the remaining network after removing the nodes are deleted repeatedly,
and the fourth deleted nodes are cv ， av ， tv . At this time, all nodes in the network have been
deleted, so the K-shell position of all nodes deleted above is 2.

From the view of the network topology in Fig. 1, node fv and node gv are obviously
different in importance. However, due to the coarse-grained problem of the K-shell
decomposition algorithm, node fv and node gv have the same K-shell position, which means

that the K-shell decomposition algorithm considers node fv and node gv to have the same
influence on the global network structure. Obviously, this is inconsistent with the reality. It
can be seen from the decomposition process (a) (b) of K-shell algorithm that the number of
iterative layers of node fv and node gv for deletion operation in K-shell decomposition
process is different. If the number of iterative layers when nodes are deleted is used as
improved K-shell position of node, then the importance of nodes can be further distinguished.

The directed weighted software function invoke network removes the function nodes
according to the above K-shell algorithm decomposition process (a) and process (b). The
number of iterations when removing the function node iv is called improved K-shell position
of the node iv , which is denoted as ()iNIKP v . That is, if in the directed weighted software
function invoke network, the number of iterations that the function node iv is removed is q,
then the improved K-shell position of the function node iv can be expressed as ()iNIKP v q= .

1824 Wanchang Jiang and Zhipeng Liu: Software Key Node Recognition Algorithm for Defect Detection based on
Node Expansion Degree and Improved K-shell Position

In this way, the improved K-shell position of each node in the directed weighted software
function invoke network in Fig. 1 is shown in Table 1.

Table 1. Improved K-shell position of all nodes

Improved K-shell position of node Delete nodes K-shell position of node

 1
gv 、 jv 、 lv 1

2
fv 1

3
bv 、 dv 、 ev 、 hv 、 kv 2

4
cv 、 av 、 tv 2

For the directed weighted software function invoke network node fv and node gv shown

in Fig. 1, the K-shell position of node is 1, the number of iterations when the K-shell
decomposition algorithm deletes the fv node is 2, and the number of iterations when deleting

the gv node is 1. Therefore, the improved K-shell position of the node fv is 2, and the

improved K-shell position of the node gv is 1. From the perspective of network topology, the

relative position of node fv in the network is closer to the root node than that of node gv , and
it should have a stronger influence in the global structure of the network, indicating that the
improved K-shell position of node can more accurately represent the importance of nodes in
the network.

3.3 Measurement of Node Defect Propagation Capability
When a node in the directed weighted software function invoke network has a defect, the
defect may be propagated to the neighboring nodes through the node invocation relationship
in the network, so that the neighboring nodes also have defects. However, due to the relative
position of the node in the network, the range of defect propagation may be limited. Therefore,
assessing the defect propagation solely within the local or global context of a node is a limited
approach. It does not accurately capture the node's true defect propagation potential within the
network. Deng et al. [14] proposed a node importance recognition algorithm by combining the
node degree with the node K-shell position. The algorithm has achieved good results in the
identification of node importance in different complex networks. The basic idea of the
algorithm is that the nodes with great influence in the local range and close to the core of the
network should have greater influence. This is consistent with the characteristics of functional
entity defect propagation in software systems. In the software system, if a function entity has
an important position in its own module, and the module to which the function entity belongs
to the core module of the software system, then when the function entity defects, the defects
will have a great impact on the entire software system with the invoke between functions. In
this section, a measure of node defect propagation capability is proposed to analyze the degree
of node defect propagation by considering node expansion degree and improved K-shell
position of node.

Definition 3.4. Node defect propagation capability (NDPC). The local defect propagation
capability of the node iv in the directed weighted software function invoke network can be
measured by the node expansion degree. The global defect propagation capability of the node

iv can be measured by the improved K-shell position measurement of the node. The node

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 18, NO. 7, July 2024 1825

defect propagation capability measure ()iNDPC v of the node iv is defined to measure the
capability of the node iv to propagate its own defects to other nodes in the network. The
calculation is shown in equation (4).
 () () ()i i iNDPC v NED v NIKP v= ∗ (4)

Among them, ()iNDPC v represents the capability of node iv to propagate its own defects
in the network. The larger the NDPC value of node iv is, the greater the capability of node iv
to propagate defects, and the more likely errors occur, resulting in software system crash.

Definition 3.5. key nodes (KN). The key nodes in DWFIN are the set of nodes iv in the
network which are sorted from large to small according to the NDPC value of node defect
propagation ability, and the top P nodes. Expressed as { | 1,2,..., }

jiKN v j P= = , where
jiv

is the node whose defect propagation ability ranks j.

3.4 Software Key Node Recognition Algorithm for Defect Detection based on
Node Expansion Degree and Improved K-shell Position
Using the software network node defect propagation capability measure NDPC proposed in
Section 3.3, a software defect detection key node recognition algorithm based on node
expansion degree and improved K-shell position (SDD_KNR) is designed to identify the key
nodes in the software defect detection process. The key node recognition algorithm
SDD_KNR is divided into four main stages. Firstly, the expansion degree NED of each node
is calculated on the directed weighted software function invoke network. The node expansion
degree calculates the capability of the node to propagate defects in the local range of the
network by balancing the influence of the node neighbor node and the secondary neighbor
node on it. Secondly, the K-shell decomposition of the directed weighted software function
invoke network is performed to obtain the improved K-shell position NIKP that can
characterize the defect propagation capability of the node in the global range of the network.
Then, the node defect propagation capability NDPC is obtained by combining the node
expansion degree NED with the improved K-shell position of node NIKP. Finally, the node
set composed of P nodes with the highest NDPC value of node defect propagation capability
is the key node of software defect detection.

The algorithm described as follows:
Input： (, ,)DWFIN V E W=
Output： KN
Main program： ()igetNDPC v

1) Initialize set Set NULL= ， KN NULL=
2) Calculate the ()iNIKP v for each node ()i iv v V∈ // The second stage
3) For each ()i iv v V∈ do
4) () () ()i i iNDPC v NED v NIKP v= ∗
5) Add ()iNDPC v to Set // The third stage
6) Sort the values in Set in descending order
7) Put the nodes corresponding to the first Top-P values in Set into KN // The fourth stage
8) Return KN

1826 Wanchang Jiang and Zhipeng Liu: Software Key Node Recognition Algorithm for Defect Detection based on
Node Expansion Degree and Improved K-shell Position

Subroutine： ()igetNED v // The first stage

1) Get i
oV of node iv and calculate the number of ()i

o iV K v

2) Calculate the i
ow of node iv

3) Initialize () 0, 0i
i ooD v w= =

4) For each ()i
j j ov v V∈ do

5) Calculate the j
oV of node jv

6) Calculate the number of ()j
o jV K v

7) Calculate the j
ow of node jv

8) () () ()i i jD v D v K v= +

9) i i j
oo oo ow w w= +

10) Calculate / ()
i

i i i
v o o oou w w w= +

11) Calculate () () * ()
ii i v iNED v K v D vµ= +

12) Return ()iNED v
The complexity of the SDD_KNR algorithm is primarily concentrated in two critical

processes: firstly, the preprocessing phase, which involves constructing a directed, weighted
network of software function calls. During the encoding phase, this study utilizes a depth-first
search (DFS) strategy to enumerate all function call chains within the network, facilitating the
subsequent computation of the directed edge weights. The most extensive search scenario
entails traversing every node and edge, yielding a time complexity of O（N+E）, where N
signifies the node count, and E represents the edge count. Secondly, we calculate the defect
propagation capacity of nodes, a process that primarily involves assessing both the expansion
degree and the improved K-shell position of each node. In the most exhaustive scenario for
calculating the expansion degree, the search encompasses all nodes and edges within the
network, resulting in a time complexity of O（N）. For determining the improved K-shell
position, the most extensive search scenario involves iterating through all network nodes,
leading to a time complexity ofO（N+E）. Consequently, the overall time complexity for this
process isO O+（N） （N+E）. Considering the two aforementioned processes, the overall time
complexity of our algorithm is 2*O O+（N+E） （N）, which is not excessively high. This
moderate complexity renders the algorithm suitable for the majority of large-scale software
systems.

3.5 Case Calculation
The directed weighted software function invoke network is abstracted from the program
instance in Fig. 1, which is used as a network instance to illustrate the solution process of the
SDD_KNR algorithm. The node av as an example. The solution process is as follows:
(1) Calculate the weight sum of the nearest neighbors set on out-direction of node av . The
node set { , , }b c dv v v is the nearest neighbors set on out-direction of node av . According to the

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 18, NO. 7, July 2024 1827

equation (1), the corresponding weights are {2,5,5}, then the weight sum of the nearest
neighbors set on out-direction of node av is 12.
(2) Calculate the weight sum of the next nearest neighbors set on out-direction of node av .
The node set { , , , }e t k cv v v v is the next nearest neighbors set on out-direction of node av , and
its number is 4. According to equation (1), the corresponding weights are {2, 4, 6, 5}, then the
weight sum of the next nearest neighbors set on out-direction of the node av is 17.
(3) The NED value of the expansion degree of node av is calculated. According to (1), (2) and

equation (3), the influence coefficient of node av is denoted as
avµ and its value is 0.4. Then

according to equation (2), the expansion degree of av can be obtained as 4.6.
(4) The NDPC value of node defect propagation capability of node av is calculated. Using
improved the K-shell decomposition algorithm, it is easy to get the improved K-shell position
of node av is 4. According to equation (4), the defect propagation capability of node av can
be obtained as 18.4.

Similarly, the NDPC value of the node defect propagation capability of other nodes can be
obtained. The NMNC algorithm [12] is used to calculate the capability value of node defect
propagation of the network in Fig. 1, and the obtained results are compared with the results of
the SDD_KNR algorithm. The node defect propagation capability values obtained by the two
algorithms are shown in Table 2.

Table 2. The ranking of values of node defect propagation capability of each node

It can be seen from Table 2 that the SDD_KNR algorithm in this paper takes the lead in

identifying the entry node av . From the network, it can be known that the node av does
occupy a great advantage in structure. Through the node av , all nodes in the network can be
called. If the node av is protected in advance, the normal operation of the program can be
effectively protected. Among other nodes in the network, for example, nodes bv and dv have
the same network structure, they are all the nearest neighbors on out-direction of node av . And
the nearest neighbors on out-direction of node bv is ev , the nearest neighbors on out-direction
of node dv is cv , and both node ev and node cv have two nearest neighbors on out-direction
nodes. But nodes ev , fv and gv can only be called by node bv , and nodes that node dv can

call can be called by node cv . Therefore, from the perspective of network structure, node bv
is more important than node dv . In identifying the node defect propagation capability, the
recognition result of SDD_KNR algorithm is that the defect propagation capability of node bv

Rank 1 2 3 4 5 6 7 8 9 10 11 12
 SDD_KNR

Number av cv kv ev tv bv dv fv gv hv jv lv

SDD_KNR Value 18.4 14.4 8.4 8.1 8.0 6.0 4.8 2.0 0 0 0 0

NMNC Number cv tv kv av dv ev hv bv jv lv fv gv

NMNC Value 108.1 102.8 82.9 79.2 64.8 54.2 52.8 45.2 33.2 28.1 26.0 12.8

1828 Wanchang Jiang and Zhipeng Liu: Software Key Node Recognition Algorithm for Defect Detection based on
Node Expansion Degree and Improved K-shell Position

is greater than that of node dv . But the recognition result of NMNC algorithm is that the defect
propagation capability of node dv is greater than that of node bv . The SDD_KNR algorithm
is closer to the real situation of the network structure, indicating that the SDD_KNR algorithm
can accurately identify the nodes with greater defect propagation capability in the network.

4. Experiments

4.1 Dataset description

Experiments are done on a PC at AMD Ryzen 5 5600H CPU @ 3.3 GHz with 16 GB of RAM.
To evaluate the performance of the SN_KNR algorithm, we conducted experimental

analyses utilizing three procedural software systems: Tar, Nano, and Cflow. The three
software systems exhibit variations in the number of function entities they encompass, as well
as in the range of functionalities these functions can perform. Within the Ubuntu environment,
we conducted dynamic execution tracing of the software system using the GCC compiler and
the Pvtrace tool. We marked the software functions to capture their dynamic invocation
sequences, which were then logged in .dot files. Subsequently, these .dot files were utilized to
construct a directed, weighted network of software function calls. Table 3 presents the
statistical data for the three distinct network types under investigation. Among them, |V|
represents the number of nodes in the network, |E| represents the number of edges in the
network, |K| represents the average degree of the network, <d> represents the average shortest
path of the network, C represents the clustering coefficient of the network, M represents the
density of the network, and D represents the diameter of the network.

Table 3. Network statistics information of three software systems
Software |V| |E| <K> <d> C M D

 Tar 190 260 2.737 4.864 0.0144 0.0145 11
Nano 103 151 2.932 3.783 0.0423 0.0287 9
Cflow 106 179 3.377 4.791 0.0928 0.0322 11

As illustrated in Table 3, the directed, weighted software function invoke networks
constructed from the three software systems exhibit distinct statistical characteristics. The Tar
software system, which boasts five primary functions including file creation and
decompression, exhibits the lowest inter-entity dependency among its function entities and has
the smallest clustering coefficient among the three networks analyzed. The Nano software
system, featuring three core functionalities such as text editing and saving, demonstrates a
moderately higher inter-entity dependency compared to the others, and its clustering
coefficient is intermediate among the three networks studied. The primary function of the
Cflow software system is to establish call relationships within language programming. Given
that the majority of its function entities are dedicated to this purpose, the system exhibits high
inter-entity dependency, resulting in the highest clustering coefficient among the three
networks analyzed.

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 18, NO. 7, July 2024 1829

4.2 Experiment design

Three groups of experiments are designed to analyze the feasibility and effectiveness of the
SDD_KNR algorithm in this paper:

1) Experiment one: In the Tar directed weighted software function invoke network, the key
node recognition algorithm based on local centrality [10] (KNMWSG) and SDD_KNR
algorithm are applied to obtain the value of node defect propagation capability, and the NED
value of node expansion degree and the NIKP value of improved K-shell position of node in
the network are calculated. The feasibility of the SDD_KNR algorithm is verified by analyzing
the influence of the nodes in the top 10 of the four metrics on the network.

2) Experiment two: Two classical key node recognition algorithms, betweenness centrality
algorithm [15] (BC) and K-shell algorithm [15] (K-shell), and two existing key node
recognition algorithms, KNMWSG algorithm and node correlation based key node recognition
algorithm [12] (NMNC), are selected as comparison algorithms. The experimental results of
different algorithms in the three directed weighted software function invoke networks of Nano,
Cflow and Tar were recorded. Removing the top 20% of the nodes in the experimental results
simulates the situation that the network is deliberately attacked, and analyzes the impact of
removing nodes on the network to select the key nodes in the software defect detection process.

3) Experiment three: Using the index of network efficiency [15] and node propagation force
[12], the key nodes of Nano, Cflow and Tar obtained by BC, K-Shell, KNMWSG, NMNC and
SDD_KNR were compared and evaluated to verify the effectiveness of SDD_KNR algorithm.

We have prioritized all nodes in the network based on the computed results from our key
node identification algorithm, ranking them in descending order. Subsequently, the top K
nodes are excised from the network, after which we calculate the efficiency of the remaining
network and the size of its largest connected component. A lower network efficiency score,
coupled with a reduced number of nodes in the largest connected component, indicates a
diminished capacity for interconnectivity among the remaining nodes. This reduction signifies
a more severe disruption to the network's integrity, thereby highlighting the significant
influence of the removed node set on the network's overall robustness.

4.3 Algorithm feasibility analysis

The SDD_KNR algorithm is used to obtain the defect propagation capability value NDPC of
each node in the directed weighted software function invoke network of Nano, Cflow and Tar.
The node NDPC value distribution of the directed weighted software function invoke network
of the three software is shown in Fig. 2. In the Fig. 2, the abscissa represents the node ranking
of the three networks, and the ordinate represents the NDPC value corresponding to each node.

1830 Wanchang Jiang and Zhipeng Liu: Software Key Node Recognition Algorithm for Defect Detection based on
Node Expansion Degree and Improved K-shell Position

Fig. 2. Directed weighted software function invoke network node NDPC value distribution

In the Fig. 2, the NDPC value curves of the three network nodes as a whole show the

characteristics that the NDPC value of the node decreases with the increase of node ranking.
Especially at the beginning of the curve, the NDPC value of the node shows a cliff-like decline,
that is, the NDPC value of the node decreases significantly compared with the NDPC value of
the previous node, indicating that there are indeed a small number of key nodes in the network.
These nodes have great capability of defect propagation and should be paid attention to in the
process of software defect detection.

In order to further verify the feasibility of the SDD_KNR algorithm, the directed weighted
software function invoke network established by Tar software is selected. The KNMWSG
algorithm and the SDD_KNR algorithm are used to obtain the node defect propagation
capability value. At the same time, the network node expansion degree NED value and the
node improved K-shell position NIKP value are calculated. The top 10 network nodes of these
four metrics are shown in Table 4.

Table 4. The top 10 nodes for each of the four metrics

Rank KNMWSG Node expansion
degree

Improved K-shell
position of node SDD_KNR

 1 main main close_archive update_archive
2 update_archive update_archive read_and read_and
3 create_archive read_and update_archive main
4 read_and dump_file0 write_eot extract_archive
5 _open_archive extract_archive set_next_block_after dump_file0
6 open_archive start_header tar_stat_destroy extract_file
7 dump_regular_file _open_archive open_archive create_archive
8 dump_file dump_regular_file skip_file _open_archive
9 dump_file0 extract_file create_archive dump_regular_file
10 extract_file decode_header find_next_block dump_file

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 18, NO. 7, July 2024 1831

As shown in Table 4, the nodes with the top 10 node defect propagation capability values
obtained by the KNMWSG algorithm are different from the nodes with the top 10 node NED
metrics. Among them, the KNMWSG algorithm identifies that the open_archive node ranked
6 is not in the top 10 node sequence of the NED metric, and the start_header node ranked 6 of
the NED metric is not in the top 10 node sequence identified by the KNMWSG algorithm. Fig.
3 is the local network diagram of node open_archive and node start_header in Tar network.

(a) node open_archive (b) node start_header

Fig. 3. Local network graph of open_archive and start_header nodes in Tar network

From Fig. 3, it can be seen that the node start_header has a more complex structure than
the node open_archive in the local network. That is to say, when the node open_archive and
the node start_header call a defect, it is more likely to infect the defect than the node
open_archive due to the more complexity of the node start_header. The node open_archive
and the node start_header are used to simulate the degree of damage to the network when the
software cannot run due to defects. The network connectivity rate decreases to 0.2381 after
the node open_archive is removed, and the network connectivity rate decreases to 0.2323 after
the node start_header is removed. It shows that the node start_header is more important than
the network, and the node expansion degree can measure the importance of the node to a
certain extent.

From the last column of Table 3, it can be seen that after the node start_header is combined
with its improved K-shell position, its node ranking falls out of the top 10. The previous 7th-
ranked _open_archive node and 8th-ranked dump_regular_file node rank 8th and 9th,
respectively, when combined with their improved k-shell positions. Fig. 4 is the local network
diagram of the node _open_archive and the node dump_regular_file in the Tar network.

1832 Wanchang Jiang and Zhipeng Liu: Software Key Node Recognition Algorithm for Defect Detection based on
Node Expansion Degree and Improved K-shell Position

（a）node _open_archive （b）node dump_regular_file

Fig. 4. Local network graphs of _open _ archive and dump_regular_file nodes in Tar network

It can be seen from Fig. 4 that _open_archive, dump_regular_file nodes and start_header
nodes have similar complexity in the Tar local network, so their node expansion metrics are
close, but _open_archive and dump_regular_file nodes have greater influence on the Tar
overall network than start_header nodes. For example, the dump_regular_file node, which is
the in-degree node of the start_header node, means that in the software system, the function
dump_regular_file node calls the start_header node. When the start_header node is defective,
the function dump_regular_file node is more likely to defect and cannot run. The node
_open_archive and the node dump_regular_file are used to simulate the degree of damage to
the network when the software cannot run due to defects. The network connectivity rate
decreases to 0.2179 after the node _open_archive is removed, and the network connectivity
rate decreases to 0.2303 after the dump_regular_file node is removed, which is lower than the
network connectivity rate after the node start_header is removed to 0.2323. It shows that the
SDD_KNR algorithm combined with the node expansion degree and the node improved K-
shell position can be applied to the identification of key nodes in software defect detection.

4.4 Key node of software defect detection
SDD_KNR algorithm, BC algorithm, K-shell algorithm, KNMWSG algorithm and NMNC
algorithm are used to obtain five kinds of node sequences sorted by importance from large to
small on the directed weighted software function invoke network constructed by Nano, Cflow
and Tar software systems. Then, the first 20% nodes of the five node sequences are removed
from the network to simulate the deliberate attack on the network, and the maximum number
of connected subgraph nodes in the remaining network is calculated. The graph of the
maximum number of connected subgraph nodes in the remaining network in the three directed
weighted software function invoke networks with the proportion of deleted nodes is shown in
Fig. 5.

(a) Nano (b) Cflow (c) Tar

Fig. 5. The maximum number of connected subgraph nodes in the remaining network

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 18, NO. 7, July 2024 1833

As shown in Fig. 5 (a)(b)(c), in the process of deleting the first 20 % nodes of the three
network node sequences, when the proportion of deleted nodes is 5%, 10%, 15% and 20%, the
maximum number of connected subgraph nodes in the remaining network identified by the
SDD_KNR algorithm is the least in the process of node deletion. From the perspective of
network robustness, the less the maximum number of connected subgraph nodes after deleting
nodes, the greater the impact of deleted nodes on the robustness of the network, that is, the
greater the importance of these nodes to the network. From the perspective of software defect
detection, deleting a node is equivalent to a node that is defective and cannot run. The smaller
the number of maximum connected subgraph nodes after deleting a node, the less functions
the software system can run, indicating that the deleted nodes have a greater impact on the
software system. In this way, these nodes that have a significant impact on the software system
should be focused on during software defect detection. These nodes that are focused on are the
key nodes for software defect detection. In the related research [16,17,18] network node
sequence, the recommended threshold of key nodes is 15%. Therefore, based on the above
experimental analysis, the first 15% of the node sequence obtained by the SDD_KNR
algorithm is selected as the key node of the software defect detection process for experimental
effectiveness analysis.

4.5 Effectiveness Analysis of Key Nodes

A. Analysis of network efficiency
In the directed weighted software function invoke network established by three software
systems Nano, Cflow and Tar, the software defect detection key node recognition algorithm is
used to identify the key nodes. Five algorithms are used to obtain the node ranking sequence
corresponding to the node defect propagation capability value in the network. According to
the analysis results in Section 4.4, the first 15% nodes of the node ranking sequence are taken
as the key nodes in the software defect detection process. The results are shown in Table 5.

Table 5. The key nodes obtained by SDD_KNR and other four key defect node recognition
algorithms on three software networks

Nano

Rank SDD_KNR NMNC KNMWSG K-shell BC

 1 main main main make_new_node display_string

2 open_buffer open_buffer open_buffer read_file statusline

3 read_file copy_of read_file copy_of read_file

4 copy_of read_file open_file make_new_buffer open_buffer

5 nmalloc nmalloc statusbar open_buffer copy_of

6 display_string make_new_buffer edit_refresh history_init close_and_go

7 ingraft_buffer display_string prepare_for_displ
ay

nmalloc finish

8 statusline statusline do_rcfiles main update_line

9 do_rcfiles make_new_node have_statedir ingraft_buffer titlebar

10 make_new_buffer ingraft_buffer process_a_keystro
ke

nrealloc statusbar

11 make_new_node history_init stat_with_alloc mallocstrcpy do_exit

1834 Wanchang Jiang and Zhipeng Liu: Software Key Node Recognition Algorithm for Defect Detection based on
Node Expansion Degree and Improved K-shell Position

12 nrealloc do_rcfiles display_string statusline process_a_keyst
roke

13 update_line nrealloc parse_kbinput do_rcfiles ingraft_buffer

14 history_init open_file load_history get_homedir parse_kbinput

15 edit_refresh mallocstrcpy is_good_file display_string get_kbinput

Cflow

Rank SDD_KNR NMNC KNMWSG K-shell BC
 1 nexttoken nexttoken parse_declaration dirdcl nexttoken

2 inverted_tree expression parse_variable_de
claration nexttoken yylex

3 direct_tree parse_variable_de
claration maybe_parm_list putback get_token

4 parse_variable_d
eclaration inverted_tree dirdcl dcl parse_declaratio

n

5 tree_output direct_tree dcl expression parse_variable_
declaration

6 expression tree_output func_body add_reference parse_dcl

7 parse_declaration func_body parse_typedef maybe_parm_list maybe_parm_lis
t

8 func_body fake_struct yyparse parse_variable_de
claration declare

9 parse_dcl putback parse_function_de
claration reference yy_get_next_bu

ffer
10 parse_typedef parse_typedef main get_symbol yyrestart

11 declare dirdcl expression parse_typedef dirdcl

12 yyparse yyparse nexttoken linked_list_appen
d expression

13 main parse_declaration get_token is_function linked_list_iterate

14 dirdcl dcl fake_struct func_body func_body

15 fake_struct maybe_parm_list declare is_printable yyparse
Tar

Rank SDD_KNR NMNC KNMWSG K-shell BC
 1 update_archive update_archive main close_archive flush_archive

2 read_and read_and update_archive read_and dump_file0

3 main set_next_block_a
fter create_archive update_archive find_next_block

4 extract_archive tar_stat_destroy read_and write_eot dump_regular_fil
e

5 dump_file0 create_archive _open_archive set_next_block_a
fter dump_file

6 extract_file find_next_block open_archive tar_stat_destroy start_header

7 create_archive extract_file dump_regular_fil
e open_archive _open_archive

8 _open_archive main dump_file skip_file gnu_flush_write

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 18, NO. 7, July 2024 1835

9 dump_regular_fil
e close_archive dump_file0 create_archive flush_read

10 dump_file decode_header extract_file find_next_block open_archive

11 find_next_block extract_archive extract_archive extract_file update_archive

12 close_archive dump_file0 find_next_block extract_archive close_archive

13 open_archive read_header flush_archive skip_member _gnu_flush_write

14 tar_stat_destroy write_eot close_archive excluded_name gnu_flush_read

15 set_next_block_a
fter open_archive read_header available_space_

after read_and

16 start_header dump_regular_fil
e

check_compresse
d_archive read_header extract_archive

17 decode_header _open_archive write_eot _open_archive decode_header

18 skip_member dump_file skip_file dump_file extract_file

19 read_header start_header write_short_name main create_archive

20 write_eot skip_file start_header dump_regular_file _flush_write

21 assign_string excluded_name skip_member check_compresse
d_archive _gnu_flush_read

22 decode_options skip_member write_header_na
me dump_file0 name_next_elt

23 skip_file assign_string _flush_write assign_string finish_header

24 apply_nonancestor_
delayed_set_stat name_gather file_selection_opt

ion tar_checksum write_short_name

25 to_chars transform_stat_in
fo file_count_links simple_finish_he

ader tar_stat_destroy

26 flush_archive names_notfound name_gather start_header set_stat

27 name_next_elt available_space_
after gnu_flush_write finish_deferred_u

nlinks
write_header_na

me

28 name_gather finish_deferred_u
nlinks

buffer_write_glob
al_xheader mv_begin_read apply_nonancestor_

delayed_set_stat

The initial network efficiency of Nano network is 0.307, the initial network efficiency of
Cflow network is 0.261, and the initial network efficiency of Tar network is 0.242. The three
networks are sequentially removed according to the order of importance of key nodes in Table
5 to simulate the deliberate attack on the network. With the removal of key nodes, the overall
trend of network efficiency changes is shown in Fig. 6.

（a）Nano （b）Cflow （c）Tar

Fig. 6. The overall change trend of network efficiency after the key nodes are removed in turn

1836 Wanchang Jiang and Zhipeng Liu: Software Key Node Recognition Algorithm for Defect Detection based on
Node Expansion Degree and Improved K-shell Position

As shown in Fig. 6 (a)(b)(c), in the process of removing key nodes in the network
successively, the network efficiency of the five algorithms on the three networks all showed
an obvious downward trend. As a whole, the network efficiency of SDD_KNR declined faster
than that of the other four algorithms. After removing all the key nodes, on the Nano network,
the network efficiency of algorithm BC, algorithm K-shell, algorithm KNMWSG, algorithm
NMNC and algorithm SDD_KNR decreased by 0.131, 0.256, 0.214, 0.260 and 0.262
respectively. Compared with the network decline rate of the other four algorithm networks,
the network efficiency decline rate of SDD_KNR Increased by 74.4 %, 11.7 %, 51.6 % and
4.2 % respectively. On the Cflow network, the network efficiency of algorithm BC, algorithm
K-shell, algorithm KNMWSG, algorithm NMNC and SDD_KNR decreased by 0.108, 0.05,
0.107, 0.128 and 0.186 respectively. Compared with the network decline rate of the other four
algorithms, the network efficiency decline rate of SDD_KNR increased by 50.9 %, 64.4 %,
51.4 % and 43.6 % respectively. On the Tar network, the network efficiency of algorithm BC,
algorithm K-shell, algorithm KNMWSG, algorithm NMNC and SDD_KNR decreased by
0.215, 0.220, 0.213, 0.223 and 0.232 respectively. Compared with the network decline rate of
the other four algorithm networks, the network efficiency decline rate of SDD_KNR increased
by 62.4 %, 53.5 %, 65.4 % and 46.5 % respectively.

After the above key nodes are removed successively, the details of the decline in each part
of the network efficiency are shown in Fig. 7.

（a）Nano （b）Cflow （c）Tar

Fig. 7. The detail change trend of network efficiency after key nodes are removed in turn

As shown in Fig. 7 (a)(b)(c), in the process of removing key nodes, on Nano network,
SDD_KNR performs the best when the proportion of nodes is deleted at 8 places, ranks first
with NMNC algorithm when the proportion of nodes is deleted at 5 places, and ranks second
when the proportion of nodes is deleted at 2 places. On the Cflow network, SDD_KNR
performs best when deleting the proportion of nodes at 13 of them, ranks second when deleting
the proportion of nodes at 1, and ranks third when deleting the proportion of nodes at 1. On
the Tar network, SDD_KNR performs best when deleting the proportion of nodes at 11 of
them, and performs second when deleting the proportion of nodes at 2. On the whole, most of
the network efficiency degradation processes of algorithm BC, algorithm K-shell algorithm
KNMWSG and algorithm NMNC are worse than SDD_KNR, which indicates that only
considering the ability of local or global defect propagation in the network cannot accurately
identify the key nodes in the software defect detection process. In summary, in the process of
removing key nodes on the three networks, SDD_KNR algorithm is at a low network
efficiency in most of the processes, indicating that SDD_KNR algorithm can effectively
identify key nodes that may have an important impact on the network efficiency.

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 18, NO. 7, July 2024 1837

B. Analysis of node propagation force
The epidemic model is a common model for the inspection of key nodes in the software defect
detection process. In this section, the SI epidemic propagation model is applied. The network
key nodes identified by different algorithms are regarded as defect sources to infect their
neighbor nodes, and the number of infected nodes in a certain period of time is used as the
node propagation force. Under the same conditions, the more the number of infected nodes,
the stronger the node propagation force. Five key node recognition algorithms were applied to
the directed weighted software function invoke network established by the software packages
Nano, Cflow and Tar to obtain the network key node, which was used as the defect source to
conduct the infection propagation experiment of the SI model. The total number of infected
nodes of each algorithm changed with the time step t, as shown in Fig. 8.

(a) Nano (b) Cflow (c) Tar

Fig. 8. Key node propagation experiment

On the three networks in Fig. 8, the curve of SDD_KNR is above the other four algorithms,
indicating that SDD_KNR is ahead of the other four algorithms in the first propagation speed
on the three networks. On Nano network, SDD_KNR has an average increase of 3.9%, 4.3%,
1.8% and 3.7% compared with BC, K-shell, KNMWSG and NMNC respectively. On Cflow
network, SDD_KNR has an average increase of 8.9%, 12.2%, 10.9% and 6.4% compared with
BC, K-shell, KNMWSG and NMNC respectively. On Tar network, SDD_KNR has an average
increase of 2.4%, 6.4%, 3.6% and 5.1% over BC, K-shell, KNMWSG and NMNC respectively.

The key nodes identified by the five algorithms are subjected to propagation experiments.
From the experimental results, it can be seen that the key nodes identified by the SDD_KNR
algorithm will propagate the defects to most nodes in the network, making most of the other
nodes also defective. Therefore, in the software defect detection, if these key nodes can be
focused on in advance, the failure of the software system can be prevented.

5. Conclusion
In this paper, a key node recognition algorithm for software defect detection is proposed to
solve the problem of insufficient recognition of existing key node recognition algorithms for
software defect detection. Identify the key nodes of the software defect detection process.
Experiments are carried out on the real software system Tar, and the feasibility of SDD_KNR
algorithm is analyzed. The SDD_KNR algorithm and the other four algorithms are applied to
the real software systems Nano, Cflow and Tar. The network efficiency and node propagation
force index of the key node set identified by the SDD_KNR algorithm are better than the other
four algorithms, which verifies the effectiveness of the SDD_KNR algorithm.

While our proposed algorithm demonstrates feasibility and efficacy in identifying critical
nodes for defect detection within process-oriented software systems, its applicability within

1838 Wanchang Jiang and Zhipeng Liu: Software Key Node Recognition Algorithm for Defect Detection based on
Node Expansion Degree and Improved K-shell Position

object-oriented systems remains to be substantiated. In subsequent research, we intend to
confirm and refine the algorithm's effectiveness, specifically targeting process-oriented and
object-oriented software systems characterized by higher clustering coefficients.

 References
[1] W. Ma, L. Chen, Y. Yang, Y. Zhou, and B. Xu, “Empirical analysis of network measures for

effort-aware fault-proneness prediction,” Information and Software Technology, vol.69, pp.50-70,
Jan. 2016. Article(CrossRef Link)

[2] T. Menzies, Z. Milton, B. Turhan et al., “Defect prediction from static code features: current results,
limitations, new approaches,” Automated Software Engineering, vol.17, pp.375-407, May. 2010.
Article (CrossRef Link)

[3] H. He, T. Yin, C. Pei, H. Wu, J. Ren, “Mining weighted frequent traversal pattern from software
executing graph,” ICIC Express Letters, vol.9, no.11, pp.2893-2900, 2015.
Article (CrossRef Link)

[4] W-F. Pan, B. Li et al., “Measuring Structural Quality of Object-Oriented Softwares via Bug
Propagation Analysis on Weighted Software Networks,” Journal of Computer Science and
Technology, vol.25, no.6, pp.1202-1213, 2010. Article(CrossRef Link)

[5] H. Maggie, G. P. Katerina, “Common Trends in Software Fault and Failure Data,” IEEE
Transactions on Software Engineering, vol.35, no.4, pp.484-496, 2009. Article (CrossRef Link)

[6] J. Y. Dai, B. Wang, J. F. Sheng et al., “Identifying Influential Nodes in Complex Networks
based on Local Neighbor Contribution,” IEEE Access, vol.7, pp.131719-131731, 2019.
Article(CrossRef Link)

[7] W. Pan, H. Ming, C. K. Chang, Z. Yang et al., “ElementRank: Ranking Java Software Classes and
Packages using a Multilayer Complex Network-Based Approach,” IEEE Transactions on
Software Engineering, vol.47, no.10, pp.2272-2295, Oct. 2021. Article(CrossRef Link)

[8] B. Y. Wang, J. H. Lü, “Software Networks Nodes Impact Analysis of Complex Software Systems,”
Journal of Software, vol.24, no.12, pp.2814-2829, 2013. Article(CrossRef Link)

[9] J. Dong, L. Q. Yang et al., “Identification method of key function node in software network,”
Journal of Yanshan University, vol.42, no.5, pp.434-443, 2018. Article(CrossRef Link)

[10] J. Ren, H. Wu, T. Yin, L. Bai, B. Zhang, “A Novel Approach for Mining Important Nodes in
Directed-Weighted Complex Software Network,” Journal of Computational Information Systems,
vol.11, no.8, pp.3059-3071, 2015. Article(CrossRef Link)

[11] Q. Wang, S. W. Hu, J. W. Guo et al., “Structure Entropy of Directed Complex Network Based
Key Node Mining Algorithm in Software Dynamic Execution,” Journal of Chinese Computer
Systems, vol.40, no.4, pp.884-889, 2019. Article(CrossRefLink)

[12] F. S. Xu, “Research on key nodes of software network based on static analysis and dynamic
tracking,” M.S. thesis, Dept. Electron. Eng., Yanshan Univ., Qinhuangdao, China, 2021.
Article(CrossRef Link)

[13] C. Q Xiong, X. H Gu, X. Y Wu, “Evaluation method of node importance in complex networks
based on K-shell position and neighborhood within two steps,” Application Research of
Computers, vol.40, no.3, pp.738-742, 2023. Article(CrossRef Link)

[14] K. X. Deng, H. C Chen, R. Y Huang, “Method of Node Importance Ranking Based on Improved
K-shell,” Application Research of Computers, vol.34, no.10, pp.3017-3019, Oct. 2017.
Article(CrossRef Link)

[15] J. X. Zhang, K. Song, P. He, B. Li, “Identification of Key Classes in software Systems Based on
Graph Neural Networks,” Computer Science, vol.48, no.12, pp.149-158, 2021.
Article(CrossRef Link)

[16] A. Zaidman, S. Demeyer, “Automatic identification of key classes in a software system using
webmining techniques,” Journal of Software Maintenance and Evolution: Research and Practice,
vol.20, no.6, pp.387-417, 2008. Article(CrossRef Link)

https://doi.org/10.1016/j.infsof.2015.09.001
https://doi.org/10.1007/s10515-010-0069-5
https://www.researchgate.net/publication/283765308_Mining_weighted_frequent_traversal_pattern_from_software_executing_graph
https://doi.org/10.1007/s11390-010-9399-9
https://doi.org/10.1109/tse.2009.3
http://doi.org/doi:10.1109/ACCESS.2019.2939804
http://doi.org/doi:10.1109/TSE.2019.2946357
http://doi.org/doi:10.3724/SP.J.1001.2013.04397
http://doi.org/doi:10.3969/j.issn.1007-791X.2018.05.009
https://www.researchgate.net/publication/282207313
https://xueshu.baidu.com/usercenter/paper/show?paperid=123u0840fb7g04a0cm6g0r6070777716
http://doi.org/doi:10.27440/d.cnki.gysdu.2021.001475
https://www.arocmag.com/abs/2022.08.0402
http://doi.org/10.3969/j.issn.1001-3695.2017.10.031
http://doi.org/doi:10.11896/jsjkx.210100200
http://doi.org/doi:10.1002/smr.370

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 18, NO. 7, July 2024 1839

[17] I. Şora, C. B. Chirila, “Finding key classes in object-oriented software systems by techniques
based on static analysis,” Information and Software Technology, vol.116, 2019.
Article(CrossRef Link)

[18] W. Pan, B. Song, K. Li, K. Zhang, “Identifying key classes in object-oriented software using
generalized k-core decomposition,” Future Generation Computer Systems, vol.81, pp.188-202,
2018. Article(CrossRef Link)

Wanchang Jiang received a B.S. degree from Liaocheng University, in 2005, and M.S.
and Ph.D. degrees from Yanshan University, in 2008 and 2017, respectively. Since 2008, he
has been a Teacher with the School of Computer Science, Northeast Electric Power
University. Currently, he is an Associate Professor. His research interests include data mining
and complex networks.

Zhipeng Liu received a B.S. degree from Changzhi University in 2020. He is currently
pursuing a master’s degree in the School of Computer Science, Northeast Electric Power
University. His main research interest is software networks.

https://doi.org/10.1016/j.infsof.2019.106176
https://doi.org/10.1016/j.infsof.2019.106176
http://doi.org/doi:10.1016/j.future.2017.10.006

